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Experimental study of secondary instability in a
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The development of secondary instability on streamwise vortex structures generated
in a hypersonic shock layer on a flat plate is experimentally studied for the flow
with Mach number M∞ = 21 and unit Reynolds number Re1 = 6 × 105 m−1. The
study is performed using the electron-beam method. The generation of weak unsteady
vortices and steady streamwise vortex structures with finite-amplitude perturbations
imposed onto them is studied in detail. Complex data on the characteristics of density
fluctuations developed on quasi-steady and unsteady streamwise vortex structures are
obtained. It is shown that the characteristics of the natural fluctuations of density
developing in the shock layer on a flat plate are qualitatively similar to density
fluctuations induced by weak unsteady vortex perturbations introduced into the shock
layer. The possibility of existence of parametric resonance between the fundamental
frequency and its harmonic and between harmonics for steady streamwise vortex
structure is shown.

1. General objectives and survey analysis
Experimental investigation of secondary instability is very important for the prob-

lem of the laminar–turbulent transition in the boundary layer. In particular, secondary
instability has a significant effect on the process of breakdown of vortices that arise
in the flow around swept wings and concave surfaces and on the transition to tur-
bulence in the boundary layer. The basic studies in this direction were conducted for
subsonic flows; a review of these studies can be found in Saric (1994) and Boiko et
al. (1999). For hypersonic flows, there are only two theoretical papers, Fu & Hall
(1992, 1993), devoted to the development of secondary instability in large-amplitude
Görtler vortices. As has been shown by Fu & Hall (1993) the influence of Görtler
vortices is not as pronounced as that of wall cooling or gas dissociation. The main
effect of Görtler vortices is to increase the unstable band of Rayleigh waves, and
thus the presence of large-amplitude vortices is likely to cause the boundary layer
to become more receptive to transition induced by Rayleigh modes. The literature
does not offer any data from experimental investigation of the characteristics of
secondary instability for high Mach numbers, in particular for a hypersonic shock
layer. However, the observation and investigation of secondary instability in a hyper-
sonic shock layer seem particularly important, since the primary mechanisms of the
loss of stability known for subsonic and supersonic flows are not manifested in the
shock layer because of the large thickness of the layer and small velocity gradients.
Therefore, secondary instability can be a dominating factor in inducing turbulence
in a hypersonic boundary layer if there are considerable crossflow and transverse
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gradients of the mean velocity, which are caused, in particular, by induced vortex
structures.

The results of an experimental study of the characteristics of density fluctuations in
a hypersonic shock layer on a flat plate in the presence of unsteady and quasi-steady
vortex perturbations of the mean finite-amplitude flow field are presented in the
paper.

2. Experimental equipment and measurement techniques
2.1. Wind tunnel and flat-plate model

The experiments were conducted in the hypersonic nitrogen wind tunnel T-327 of
ITAM SB RAS. This facility is a continuous-operation open-type free-jet wind tunnel
with gas efflux into a vacuum cavity with a volume of 100 m3, which is evacuated
by mechanical pumps with a productivity of 6 m3 s−1. The running time of the wind
tunnel is 30 s. It is equipped with an electric gas heater and a system for shock
starting. The diameter of the exit cross-section of a conical water-cooled nozzle is
0.22 m, the nozzle cone angle is 8◦, and the diameter of the uniform-flow core is
0.1 m. The Mach number at the nozzle exit is equal to 20. The longitudinal gradient
of the Mach number due to flow expansion in the test section is ≈ 3 m−1. The
non-uniformity of the Mach number distribution over the flow core cross-section is
less than 5% at the edge of the core. The measurements were performed in the test
section of the wind tunnel, where the flow Mach number is M∞ ≈ 21, for the unit
Reynolds number Re1 = 6× 105 m−1 and temperature factor Tw/T0 = 0.26–0.29. The
stagnation temperature was kept at 1100 K. For these conditions, the flow velocity
was U∞ = 1480 m s−1 and the density (concentration) of nitrogen molecules was
n∞ = 6.8× 1021 m−3. The gas density decreases by more than an order of magnitude
outside the flow core, at a distance of 0.02 m. From the data of electron-beam
measurements and acoustic probing, the total intensity of density fluctuations in the
flow core does not exceed 0.5%. Nevertheless, such a level of noise means that the
installation cannot be classified as a ‘quiet’ wind tunnel.

The characteristics of density fluctuations were measured in the shock layer on
a flat-plate model, which was a trapezium made of blackened aluminium with the
following dimensions: the leading-edge width was 0.1 m, the trailing-edge width was
0.08 m, the length was 0.35 m, and the thickness was 0.008 m; the wedge angle at the
leading edge was 7◦ and the radius of the edge bluntness was about 0.05 mm. The
side edges of the plate were made as wedges with an angle of 20◦.

2.2. Principle of introduction of perturbations and construction of the source of
perturbations

The perturbations were introduced into the shock layer by the interaction of the
leading edge of the flat plate with an oscillating shock layer generated by an oblique
aerodynamic whistle (see figure 1, right-hand side). A photograph of the electron-
beam visualization of the hypersonic flow around the flat-plate model with a whistle
is shown in figure 2. As is shown by Maslov & Mironov (1996), the flow around
the whistle is accompanied by periodic radial oscillations of the shock layer, which
can be used to generate perturbations. In the region where the leading edge of the
flat plate and the shock layer generated by the whistle cross, surface streamlines pass
through two shock waves: the oblique shock wave of the whistle and the bow shock
of the leading edge of the plate. In the region away from this crossing point, surface
streamlines pass through only the bow shock. Because of that, a zone with a lower
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Figure 1. A schematic of electron-beam measurements and the introduction of perturbations into a
hypersonic shock layer. 1 – electron beam; 2 – electron gun; 3 – hypersonic flow; 4 – flat-plate model;
5 – collector of electrons; 6 – lens; 7 – light filter; 8 – photomultiplier, 9 – oblique-cut whistle.

Figure 2. Electron-beam visualization of the flow field around the flat-plate model with a whistle.

static pressure is formed on the plate past the interaction region. Wavy dashed lines
in figure 1 (right-hand side) show the boundaries of the low-pressure zone for an
oscillating shock wave generated by the whistle.

Two-dimensional calculations within the framework of the full viscous shock layer
model (Vetlutsky, Mironov & Poplavskaya 1996; Maslov et al. 1999) showed that
the static pressure in the interaction region is three times lower than the pressure in
the undisturbed region. This should lead to the motion of gas from the periphery to
the plate centreline, the formation of a gas flow moving upward from the plate, and
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Figure 3. Visualization of the flow field on the plate surface using a film of oil and chalk powder.

the generation of a pair of counter-rotating vortices extended along the flow (arrows,
figure 1, right-hand side). Depending on the depth of penetration of the flat-plate
leading edge into the shock layer on the whistle and the amplitude of oscillations of
the shock layer, it is possible to obtain both purely unsteady vortices and also quasi-
steady vortex structures with oscillations imposed onto them. The formation of a pair
of counter-rotating vortices can be illustrated by a photograph of flow visualization
on the plate surface (figure 3), which was performed using the oil-film technique with
chalk powder. The light stripe on the plate centreline corresponds to the convergence
line, the two neighbouring dark stripes show the position of the maximum velocity
of the transverse motion of the gas. The flow pattern in this picture corresponds to a
quasi-steady interaction.

The construction of the whistle is described in Maslov & Mironov (1996). In the
present work, the whistle was a copper tube 0.15 m long with external diameter 0.008 m
and internal diameter 0.006 m and with an obliquely cut frontal face at an angle of
20◦ to the tube axis. A movable, tightly positioned piston with a probe for pressure
fluctuations was located inside the tube. The tube was cooled by running water to
maintain a constant temperature of the resonator walls. The perturbation frequency
could be controlled by moving the piston along the tube. The distance between the tip
of the whistle and the edge of the plate was 40 mm in the streamwise direction. The
tube was located under the plate, pitched down at an angle of 8.5◦ to the free-stream
direction. This angle ensured the maximum intensity of pressure fluctuations in the
cavity of the whistle, equal to 140 dB at frequency 5–10 kHz. Preliminary distributions
of the constant and variable components of the signal of the optical system were
obtained during transverse scanning of the shock layer on the whistle by an electron
beam in the cross-section corresponding to the position of the flat-plate leading edge.
Based on these data and the technique described by Maslov & Mironov (1996), we
estimated the amplitude of the shock-wave oscillations to be 0.2 mm. The character
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of interaction could be controlled by varying the distance between the leading edge
of the plate and the tube surface.

2.3. Equipment and measurement technique

The measurements were performed using the method of electron-beam fluorescence
described by Maslov, Mironov & Shiplyuk (1996a). The measurement scheme is
shown in figure 1. The probing electron beam (1) was generated by an electron
gun (2), which had a magnetic system for controlling the beam position. The electron
beam propagated across a hypersonic flow (3) parallel to the flat-plate surface (4). The
current in the beam was controlled by the current to an electron collector (5) located
outside the flow. The optical system of nitrogen fluorescence registration consisted
of a fast lens (6), light filter (7), and photomultiplier (8). The coordinate system
is shown in the figure. The X-scanning of the measurement point was performed
by moving the plate along the flow centreline within the range of −5 . . . + 210 mm
relative to the electron beam position. The scanning of the measurement point along
the Y -coordinate, which passes across the shock layer, was performed by moving the
plate across the flow within the range of −15 . . . + 15 mm from the flow centreline.
The scanning along the transverse coordinate Z was performed by moving the optical
system for fluorescence registration (the point of observation) along the axis of the
electron beam within the range of −20 . . . + 50 mm from the axis of symmetry of
the plate. Control measurements on a motionless model, which were performed by
scanning the flow field with a moving electron beam, showed that those results
coincided with the data obtained by moving the flat plate. The spatial resolution of
the optical system was 2 mm in the X- and Z-directions, and along the Y -coordinate
it was determined by the width of fluorescence and was ≈ 3 mm.

The mean density was recovered from the values of the mean component of
the photomultiplier signal by means of the calibration characteristic of the optical
system, which relates the fluorescence intensity to the density at the measurement
point (Maslov & Mironov 1998). The accuracy of mean density measurements was
better than 5%.

All measurements were made at the position of the maximum of density fluctuations
in the shock layer. The measurements showed that the positions of the maximum
fluctuations coincide with the line Y = 0.75∆ (∆ is the shock-wave position relative
to the surface, which was obtained from flow visualization on the plate using an
electron beam). The positions of the maximum fluctuations corresponded within 10%
to the equal mean-density line in the shock layer on the flat plate. As has been shown
by Maslov & Mironov (1998), this allows the characteristics of density waves to be
received directly from the fluctuating component of the photomultiplier signal.

2.4. Processing technique

All measurements were performed for the fixed fundamental frequency of pressure
pulsations in the cavity of the whistle f = 8.5 kHz, and two first harmonics and the
subharmonic of this pulsation. For the test conditions, the frequency f corresponds
to the frequency parameter F = 0.6× 10−4 (F = 2πf/Re1eUe, where Re1e, Ue are the
unit Reynolds number and the gas velocity calculated from the parameters behind
the shock wave on the plate).

At the first stage of processing the fluctuating component of the photomultiplier
signal, the fast Fourier transform of temporal data arrays was used to calculate the
cross-spectra (amplitude and phase spectra) between the fluctuations of fluorescence
intensity and the reference signal. The pressure fluctuations in the whistle (signal
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of the pressure probe) served as a reference signal. This allowed one to eliminate
the effect of the stochastic noise of the low-intensity photocurrent and wide-band
natural density fluctuations in the shock layer on the flat plate. The cross-spectra
were averaged on 64 transforms of independent temporal data samples. In addition,
the coherence spectra (normalized cross-spectra) were calculated. These spectra were
used to estimate statistical errors of definition of the amplitude and phase (Bendat &
Piersol 1980). Under the present test conditions, statistical fluctuations are the main
source of measurement data errors.

Normalization of the amplitude cross-spectra by the square root of the electron-
beam current and the reference signal intensity helped to minimize the effect of
variation of these parameters on the measurement results. The amplitude measure-
ments in the transverse direction Z were corrected to account for the attenuation
of the signal of the optical system, which is related to scattering of electrons in the
gas. The signal attenuation characteristics were determined by measurements on the
flat-plate model without the whistle, as described by Vetlutsky et al. (1995).

Since there was no subharmonic in the pressure fluctuation spectrum in the whistle,
the cross-spectra for the subharmonic frequency were calculated using the reference
signal obtained by halving the fundamental frequency of pressure fluctuations in the
whistle. This allows one to identify slow variations of the fundamental frequency,
which is important for determining the phase of fluctuations.

After that, the amplitude and phase spectra versus the transversal wavenumbers β
(β = 2π/λZ , where λZ is the wavelength in the transverse direction Z) were calculated
at several X-stations using Hamming’s spectral window. Previously, measurements
had been symmetrized relative to the centreline of the plate (Z = 0). β-spectra were
calculated from the relation

A(β) exp [iφ(β)] =

∫ Z0

−Z0

A(z) exp [iφ(z)] exp [−iβz]∂z. (1)

Here A, φ are the amplitude and phase of density fluctuations; −Z0, Z0 are the
coordinates of the side edges of the plate. The method of expansion on transversal
wavenumbers reveals the existence of inclined waves of density, to determine the
phase velocity and increment from the inclination angle.

Based on the resultant spectra, the longitudinal phase velocities of propagation of
the density waves CX and the growth rates −αi for the fundamental frequency and
harmonics were determined using the least-squares technique. The angles of inclination
of the wave vector to the stream direction χ were calculated from the values of the
transverse β and longitudinal α wavenumbers. The angle χ was calculated from the
relation

χ = a tan

(
β

α

)
; α =

2πf

CXUe

.

Application of the β-spectra reduces a statistical error in the definition of the
spectral amplitude and phase (consequently, phase velocity and increment), as when
evaluating spectra, values containing an accidental error are summed (see relation
(1)). Also, random fluctuations in the amplitude of spectra are shifted in regions of
large wavenumbers (large angles of inclination of waves).

In the present paper the error in the definition of amplitude and phase of β-spectra
was calculated by the method of direct numerical simulation. Thus for each β-
spectrum ten new β-spectra were calculated. These spectra were calculated for values
of amplitude Ā(z) and phase φ̄(z) randomly differing from the measured values of
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Figure 4. Deformation of the mean-density field. The results are averaged along the plate.

A(z) and φ(z) from density fluctuations by a statistical error defined earlier using
the coherence spectra. Then, to each value of amplitude and phase of the initial
β-spectrum an error, corresponding to the maximum deviation of these values in the
ensemble of the ten additional spectra at the same wavenumber, was added.

The calculations have shown that the error in the amplitude and phase of the β-
spectrum (in the range −1 6 β 6 1 rad mm−1) decreases approximately proportionally
to (N/2)1/2. Here N is the number of measurements along the Z-axis. The values of
these errors were used to estimate the error of definition of the phase velocity and
increment.

3. Measurement results
Two regimes of interaction between the flat-plate leading edge and the shock layer

on the whistle were studied in detail in these experiments: (i) the generation of
unsteady vortices; and (ii) the formation of a steady pair of vortices with fluctuations
imposed onto them.

(i) Unsteady vortices

When the plate leading edge is placed at the depth of only 0.1 mm into the shock
layer of the whistle, the amplitude of the shock-wave fluctuations exceeds this depth
so that a vortex is formed only in part of the fluctuation period. This depth is the
maximum distance between the line of the plate leading edge and the outer surface
of the conical shock wave from the whistle in the region where they cross. The vortex
motion of the gas leads to a weak deformation of the mean-density field. Figure 4
shows the transverse distribution of density n/nn averaged over all X cross-sections.
The density of molecules n is normalized by the density in the undisturbed shock
layer nn at the measurement point, and the error bars in the graph show the root-
mean-square scatter of the measurement data over the cross-sections. It is seen that
the distortion of the mean-density field does not exceed 5%. The character of this
distortion corresponds to a pair of counter-rotating vortices, since the region of lower
density on the plate centreline is correlated with two regions of higher density located
outside the centreline, which confirms the assumption about the mechanism of the
generation of perturbations. An oscillogram of perturbations at the fundamental
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Figure 5. Oscillogram of the field of density fluctuations in the cross-section X = 60 mm at the
fundamental frequency. The solid curves correspond to positive values of the deviation from mean
density, the dashed curves refer to negative values.
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Figure 6. Amplitude β-spectra of density fluctuations at several X cross-sections: (a) fundamental
frequency; (b) first harmonic.

frequency at a cross-section 60 mm from the plate leading edge is shown in figure 5.
The solid isolines refer to positive values of density fluctuations, and the dashed curves
show negative values. A comparison of the plots in figures 4 and 5 shows that the
region of fluctuations corresponds to the region of deformation of the mean-density
field.

The amplitude of fluctuations normalized by the free-stream density n′/n∞ varied
from 0.1% to 0.2% along the plate. It is seen from the amplitude (figure 6a, b)
and phase (figure 7a, b) β-spectra obtained at several cross-sections that quasi-two-
dimensional perturbations with the base width of ≈ ±0.5 rad mm−1 for the funda-
mental frequency and the first harmonic with a maximum at β = 0 are observed
in the flat-plate shock layer. Based on the phase β-spectra calculated in the range
X = 60 to 210 mm, we obtained the longitudinal phase velocities of the perturbations
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CX . It was found that the longitudinal phase velocity is constant along the plate
and depends only on the wavenumber β. In a narrow region near the plate edge
(X < 30 mm), the phase velocity decreases to a value close to 0.3, which agrees with
the data of Maslov, Mironov & Shiplyuk (1996b), in which the region near the plate
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edge where the formation of vortices occurs was studied. Curves 1 and 2 in figure 8
show the longitudinal phase velocity as a function of the angle of inclination of the
wave vector to the stream direction CX(χ) for the fundamental frequency and the first
harmonic, respectively. (The parameters of the second harmonic and subharmonic
in case (i) were not measured, since their amplitude was lower than the threshold
value of the measurement system.) The velocity is normalized by the gas velocity
behind the shock wave Ue. For comparison, curve 3 shows 1 − 1/(Me cos χ). Here
Me is the Mach number behind the shock wave. According to the linear theory of
stability of compressible flows (Mack 1969), perturbations with phase velocity lower
than this curve belong to the acoustic mode, and those with phase velocity higher
than this curve belong to the vortex mode. It is seen from figure 8 that, within the
angle of ±20◦, the perturbations at the fundamental frequency propagate as acoustic
vibrations. For higher angles, most probably, vortex perturbations are observed. The
longitudinal phase velocity at the harmonic frequency was significantly lower and
corresponded to the acoustic mode for all angles.

Based on the amplitude of the β-spectra, the standard procedure was applied to
calculate the growth rates −αi. Curves 1 and 2 in figure 9 show the growth rate
versus the angle of wave propagation −αi(χ) for the fundamental frequency and first
harmonic, respectively. It is seen that the perturbations at the fundamental frequency
increase and those at the first harmonic frequency decay.

(ii) Quasi-steady vortices

When the plate edge is placed at the depth of 1.2 mm into the shock layer of the
whistle, a quasi-steady regime of interaction is observed. It is accompanied by the
formation of a region of significant deformation of the mean flow field along the plate,
seen in the visualization of figure 3. Figure 10(b) shows the mean-density distribution
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Figure 10. (a) Distribution of the amplitude of density fluctuations; (b) distribution of the defor-
mation of the mean-density field in the maximum of fluctuations in the Y -direction in the flat-plate
plane.

n/nn on the plate. It is seen that the deformation of the mean flow field increases
slightly downstream and reaches 40%. The character of the density deformation also
corresponds to the propagation of a pair of vortices, since the region of lower density
is correlated with the regions of higher density.

The asymmetry of the density field deformation along the normal coordinate
relative to the density in the undisturbed shock layer in figure 10(b) is related to the
nonlinear character of the mean-density distribution on the plate along the Y -axis
at Y ≈ 0.75∆. The measured mean-density distributions on the plate in the absence
of vortex disturbances are shown in figure 11. The calculated mean characteristics
of the flow field in the undisturbed shock layer (velocity, temperature, pressure) are
presented by Vetlutsky et al. (1995, 1996). The maximum deviations of density from
the undisturbed value correspond to a shift of the shock layer by ≈ 3%–5% of its
thickness ∆ away from the plate (the region of lower density) and by the same value
toward the plate (the region of higher density). Estimates of the deformation of the
mean-velocity field in the shock layer yield ≈ 5% of the undisturbed value. It should
be noted that in case (i) the distortions of the mean-density field are rather small
and, therefore, symmetric (the deformation of the mean-velocity field does not exceed
≈ 0.6%).

The amplitude of disturbances n′/n∞ rapidly increases along the plate from 0.6% to
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6% in the range X = 30 to 210 mm (see figure 10a). A typical frequency spectrum and
oscillogram of the transverse distribution of density fluctuations is shown in figures
12 and 13 for the cross-section X = 210 mm. A comparison of data in figures 10(a, b)
and 13 shows that there are two maxima of fluctuations corresponding to the slopes
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of the low-density region, and the phase of fluctuations jumps by 180◦ on passing
from the region of decreasing mean density to the region of increasing mean density.
The intensity of fluctuations in high-density regions turned out to be significantly
lower.

The amplitude and phase β-spectra in figures 14(a, b, c) and 15(a, b) show that
quasi-two-dimensional perturbations with base width of ≈ ±0.25 rad mm−1 at the
fundamental frequency and at the harmonic frequencies, with a maximum at a
wavenumber equal to zero, are also observed in this case. For the X-coordinate in
the range from 30 to 210 mm, the longitudinal phase velocities depend only on the
transverse wavenumber. For distances smaller than 30 mm from the leading edge,
the phase velocity, as in the previous case, decreases to a value close to 0.3, which
is most probably connected with the existence of a transitional flow region at the
edge (Maslov et al. 1996b). Figure 8 shows the longitudinal phase velocity CX as a
function of the angle of inclination of the wave vector to the stream direction χ for
the fundamental frequency (curve 4) and the first and second harmonics (curves 5
and 6). In this case, the phase velocities are close to each other and correspond to the
acoustic mode of disturbances.

In contrast to case (i), the dependence of the amplitude β-spectra on the longi-
tudinal coordinate, for distances of more than ≈ 130 mm from the edge, cannot be
described by a simple exponential curve because of the decrease in the growth rate
of disturbances, which indicates a possible nonlinear stage of evolution of distur-
bances. In this connection, the growth rates for case (ii) were calculated only in the
interval X = 30–130 mm. Curves 3, 4, and 5 in figure 9 show the growth rates at the
fundamental frequency and harmonics versus the angle χ. The growth rates at three
frequencies turned out to be close to each other and significantly greater than in case
(i). A certain increase in the growth rate in passing from the fundamental frequency
to a higher harmonic should be noted. At the end of a set of measurements, in the
region of strong nonlinearity of amplitude growth (see figure 14) of the fundamental
frequency and frequency of harmonics, it is possible to see the appearance of two
symmetrical peaks.

To determine possible mechanisms for the appearance of nonlinearity in the de-
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Figure 16. (a) Comparison of the longitudinal phase velocities. Natural disturbances:
1 –X = 73 mm; Re1 = 6×105 m−1; 2 –X = 300 mm; Re1 = 9.5×105 m−1. 3 – Secondary disturbances
(case (i)), the longitudinal phase velocities (fundamental frequency and harmonic) determined in the
range X = 30–210 mm. (b) Comparison of the growth rates of the density waves. 1 – Spectrum of
increment of natural disturbances, determined in the range X = 45–100 mm at Re1 = 6× 105 m−1;
2 – increments of secondary disturbances (case (i)), determined in the range X = 30–210 mm;
3 – computational data.

velopment of secondary instability, the characteristics of the density waves at the
subharmonic frequency were measured. Since the subharmonic was extracted from
the integral signal for a constant level of the reference signal, which is not related in
amplitude with the process under study, only the phase β-spectra are fully informa-
tive. The amplitude β-spectra allow only a qualitative estimate of the spectrum shape.
It was found that they occupy a wide range of transverse wavenumbers with a weak
maximum at β = 0, which corresponds to a narrow wave packet in the Z-direction.
The longitudinal phase velocity CX of fluctuations at the subharmonic frequency,
which was calculated on the basis of phase spectra, is shown by curve 7 in figure 8.

4. Discussion of results
Since the results of the present study are novel for hypersonic viscous flows, it

is of interest to compare them with the known experimental data on the secondary
instability of streamwise vortex structures and the data on the evolution of natural
disturbances in a hypersonic shock layer on a flat plate.

We should note the coincidence of the maximum disturbance intensities with the
regions of the maximum mean-density gradient where the mean-velocity gradient is
in the Z-direction. A similar phenomenon is mentioned in the review by Saric (1994)
and experimentally confirmed for subsonic flows in Bakchinov et al. (1995), Boiko et
al. (1995a, b, 1997), Levchenko & Shcherbakov (1997). The intensity of disturbances
is higher in the upward flow from the plate, which is in agreement with the data
of Levchenko & Shcherbakov (1997). The fact that the growth rates in case (ii) are
greater than in case (i) by almost an order of magnitude is most probably related
to the presence of a high mean-velocity gradient along the normal and transverse
coordinates and, as a consequence, to the manifestation of viscous instability of the
flow.
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The characteristics of the waves of secondary instability (the longitudinal phase
velocity and the growth rate) are compared in figure 16(a, b) for case (i) of the present
study and the corresponding data for natural perturbations of density in a hypersonic
shock layer on a flat plate. On figure 16(b) the result of the calculation of the
fluctuations increment is shown (dashed line). It was derived according to the model
proposed by Blackaby, Cowley & Hall (1993) for the same experimental conditions
as the present paper. Fu & Hall (1993)’s results for Prandtl number Pr = 0.72 were
used. The technique for obtaining the characteristics of natural perturbations and
some results can be found in Maslov & Mironov (1998), and Maslov, Mironov &
Shiplyuk (1998). It is quite possible that the difference between 1 and 3 in figure 16(b)
is related to the influence of strong viscous–inviscid interaction in the shock layer.

For conditions (i), the mean-flow-field perturbations are rather small, as are the
amplitudes of the moving perturbations of density, which allows a comparison with
the results for natural perturbations. For the fundamental frequency and the first
harmonic of vortex disturbances, the characteristics were compared within the range
of angles χ = ±20◦, since the angle of propagation of natural perturbations does not
exceed this value (Maslov et al. 1998). It is seen in figure 16(a) that the behaviour of
the longitudinal phase velocity is qualitatively similar, its value for vortex disturbances
decreases with increasing frequency, and its values correspond to the acoustic mode
of disturbances. The coincidence is better for the growth rate, particularly for the fun-
damental frequency. It can be concluded that the introduction of vortex disturbances
for the conditions of case (i) quite adequately simulates the process of penetration
and development of natural external-flow perturbations in the shock layer.

It is worth mentioning that the position of the maxima of secondary fluctuations
agrees with the position of the temperature adjustment layer (Blackaby et al. 1993;
Fu & Hall 1993), where the temperature changes rapidly from its large value in the
viscous layer to its free-stream value (quite the contrary occurs for density, see figure
11). This layer is the most dangerous site for Rayleigh instability.

The increase of the growth rates of density pulsations for a wide frequency band
(at the fundamental frequency and harmonics), caused by a high-amplitude vortex,
qualitatively agrees with the results of Fu & Hall (1993).

The nonlinearity in the development of secondary instability in case (ii) (figure 14)
is not related to energy transfer from the fundamental frequency to the subharmonic.
A comparison of the longitudinal wavenumbers α at the fundamental frequency
(αf = 0.042 rad mm−1) and subharmonic (αs = 0.059 rad mm−1) shows that it is im-
possible to make a combination of them that would satisfy the parametric resonance
condition. The process of the initial growth of harmonics and subsequent parametric
resonance between the fundamental frequency and the first harmonic is possibly
observed in case (ii), wherein the fundamental frequency acts as the subharmonic.
Similar processes are also possible for harmonics whose frequency differs by a factor
two. This four-wave mechanism was first proposed by Craik (1971) and developed
by Nayfeh & Bozatli (1979). This mechanism was first experimentally shown and
studied for subsonic boundary layers by Kachanov (1987, 1994). In this case, the
β-spectra of the fundamental frequency and harmonics should have symmetric peaks
about the zero wavenumber, which correspond to three-dimensional waves, which is
observed in experiment (see the last cross-sections of β-spectra in figure 14). Based
on the parametric resonance conditions and approximate equality of phase velocities
of the perturbations, the positions of the maxima of these peaks on the β-axis should
be close to the longitudinal wavenumbers α of those perturbations that act as the
subharmonic in this process: β ≈ ± 0.04 for the fundamental frequency, β ≈ ±0.085
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cross-sections X = 30 to 130 mm (1) and X = 180 to 210 mm (2) (case (ii)).

for the first harmonic, β ≈ ±0.125 for the third harmonic, etc. and β/α is close to
unity. The experimental positions of the maxima in the last cross-sections in figure
17 are quite close to these values. Apparently, the appearance of phase dependence
for transversal wavenumber β in the last cross-section in figure 15(a) is connected to
the formation of two inclined waves at the fundamental frequency.

The β-spectra of increment of pulsations at the fundamental frequency calculated
in the ranges X = 30 to 130 mm and X = 180 to 210 mm are shown in figure
18. It is seen that growth of inclined waves takes place in the last cross-sections
of the measurement section. The dependences in figures 17 and 18 are similar to
the dependences obtained by Kachanov (1987, 1994) for K-regime transition of a
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subsonic boundary layer, where the existence of the parametric resonance and the
transformation of a two-dimensional wave into two oblique waves was shown.

The experimentally observed generation of harmonics and the similarity of the
longitudinal phase velocity and the growth rates of the secondary instability frequency
spectrum for the case of strong disturbances (ii) can be explained within the framework
of the model proposed by Kimmel & Kendall (1991). According to this model,
the harmonics are generated by transverse oscillations of a hypersonic boundary
layer with a significantly non-monotonic normal distribution of the gas dynamic
parameters, i.e. velocity or density (see figure 11). The harmonics arise in the regions
of the maxima of the corresponding derivatives of the distributions with respect
to the normal coordinate Y and transverse coordinate Z . This produces a natural
relationship between the propagation velocity of the harmonics and their growth rates
and the velocity and growth rate of disturbances at the fundamental frequency.

5. Conclusion
Experiments on unsteady and quasi-steady interaction of the shock layer from an

oblique whistle and the flat-plate edge were conducted in a low-density hypersonic
flow for Mach number 21 and unit Reynolds number 6× 105 m−1. A vortex motion
of the gas in the flat-plate shock layer is demonstrated. The deformation of the
mean-density field and the characteristics of moving disturbances at the fundamental
frequency, two first harmonics and subharmonic are measured. The longitudinal phase
velocities and the growth rates of disturbances versus the angle of wave propagation to
the stream direction are obtained for two cases of interaction. A significant difference
in these characteristics in these two cases of unsteady and quasi-steady interaction is
shown. The measurement results are compared with some data obtained for subsonic
flows, the results for natural perturbations in a hypersonic shock layer, some results
of the linear theory of the stability of compressible flows, and models of the nonlinear
stage of the evolution of perturbations in the boundary layer. It is shown that some
characteristics of density fluctuations induced by weak unsteady vortex perturbations
are qualitatively similar to the natural fluctuations of density developing in the shock
layer on a flat plate. The possibility of the existence of four-wave parametric resonance
between the fundamental frequency and the first harmonic and between the harmonics
for steady streamwise vortex structure is shown.

The work was supported by the Russian Foundation for Basic Research (grant No.
98-01-00462).
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